Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Behav Brain Res ; 453: 114615, 2023 09 13.
Article En | MEDLINE | ID: mdl-37558167

Aspartame (ASP) is a common sweetener, but studies show it can harm the nervous system, causing learning and memory deficits. ß-caryophyllene (BCP), a natural compound found in foods, including bread, coffee, alcoholic beverages, and spices, has already described as a neuroprotector agent. Remarkably, ASP and BCP are commonly consumed, including in the same meal. Therefore, considering that (a) the BCP displays plenty of beneficial effects; (b) the ASP toxicity; and (c) that they can be consumed in the same meal, this study sought to investigate if the BCP would mitigate the memory impairment induced by ASP in rats and investigate the involvement of the brain-derived neurotrophic factor (BDNF)/ tropomyosin receptor kinase B (TrKB) signaling pathway and acetylcholinesterase (AChE) activity. Young male Wistar rats received ASP (75 mg/kg; i.g.) and/or BCP (100 mg/kg; i.p.) once daily, for 14 days. At the end of the treatment, the animals were evaluated in the open field and object recognition tests. The cerebral cortex and hippocampus samples were collected for biochemical and molecular analyses. Results showed that the BCP effectively protected against the cognitive damage caused by ASP in short and long-term memories. In addition, BCP mitigated the increase in AChE activity caused by ASP. Molecular insights revealed augmented BDNF and TrKB levels in the hippocampus of rats treated with BCP, indicating greater activation of this pathway. In conclusion, BCP protected against ASP-induced memory impairment. AChE activity and the BDNF/TrkB signaling pathway seem to be potential targets of BCP modulatory role in this study.


Acetylcholinesterase , Cognitive Dysfunction , Animals , Male , Rats , Acetylcholinesterase/metabolism , Aspartame/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Rats, Wistar , Receptor, trkB/metabolism , Signal Transduction , Tropomyosin/metabolism
2.
Brain Sci ; 13(3)2023 Feb 23.
Article En | MEDLINE | ID: mdl-36979196

Aflatoxin B1 (AFB1) is the most common toxic mycotoxin that contaminates food. The treatment of its intoxication and the management of contaminations are a constant subject of health agendas worldwide. However, such efforts are not always enough to avoid population intoxication. Our objective was to investigate whether intermittent exposure to AFB1 would cause any impairment in biochemical and behavioral parameters, intending to simulate an irregular consumption. Male Wistar rats received four AFB1 administrations (250 µg/kg) by intragastric route separated by a 96-h interval. Toxicity was evaluated using behavioral tests (open field, object recognition, nest construction, marble burying, and splash test), biochemical markers of oxidative stress (cerebral cortex, hippocampus, liver, and kidneys), and plasma parameters of hepatic and renal functions. The intermittent exposure caused no modification in body weight gain as well as in organ weight. Both control and AFB1 groups presented similar profiles of behavior to all tests performed. Furthermore, AFB1 administrations alter neither antioxidant defenses nor markers of oxidation in all assayed tissues and in the plasma markers of hepatic and renal functions. Therefore, AFB1 intermittent administration did not cause its common damage from exposure to this toxicant, which must be avoided, and additional studies are required.

3.
J Food Sci ; 88(4): 1731-1742, 2023 Apr.
Article En | MEDLINE | ID: mdl-36789859

Several studies demonstrated the toxicity of aspartame (ASP) and aflatoxin B1 (AFB1 ) in preclinical models. Although the majority of these reports assessed the toxic effects of each substance separately, their concomitant exposure and hazardous consequences are scarce. Importantly, the deleterious effects at the central nervous system caused by ASP and AFB1 co-exposure are rarely addressed. We evaluated if concomitant exposure to AFB1 and ASP would cause behavioral impairment and alteration in oxidative status of the brain in male rats. Animals received once a day for 14 days AFB1 (250 µg/kg, intragastric gavage [i.g.]), ASP (75 mg/kg, i.g.), or both substances (association). On day 14, they were subjected to behavioral evaluation, and biochemical and molecular parameters of oxidative status were measured in the cerebral cortex and hippocampus. In the open field test, AFB1 and combination treatments modified the motor, exploratory, and grooming behavior. In the splash test, all treatments caused a reduction in grooming time compared to the control group. An increase in thiobarbituric acid-reactive substances content induced by AFB1 and combination treatments was observed. The antioxidant defenses (vitamin C, nonprotein sulfhydryl, and ferric reducing antioxidant power) were impaired in all groups compared to control. Regarding molecular evaluation, mitochondrial superoxide dismutase-2 immunoreactivity decreased after AFB1 or ASP exposition in the hippocampus. Thus, co-exposure to ASP and AFB1 was potentially more toxic because it aggravated behavioral impairments and oxidative status disbalance in comparison to the groups that received only ASP or AFB1 . Therefore, our data suggest that those substances caused a disruption in brain homeostasis.


Aflatoxin B1 , Antioxidants , Rats , Male , Animals , Antioxidants/pharmacology , Aflatoxin B1/toxicity , Aspartame/toxicity , Ascorbic Acid/pharmacology , Hippocampus/metabolism , Oxidative Stress
4.
Drug Chem Toxicol ; 45(6): 2780-2785, 2022 Nov.
Article En | MEDLINE | ID: mdl-34709106

The potential interactions among food additives/contaminants and the consequences to biological systems is a topic that is rarely addressed in scientific literature. Thus, the current study investigated if the combined administration of ASP and AFB1 would impair hepatic and renal oxidative status. Male Wistar rats received during 14 days once a day ASP (75 mg/Kg) and/or AFB1 (250 µg/Kg) through intragastric route. At the end of experimental protocol, samples of liver and kidneys were collected for assessing biochemical markers of oxidative status. In the hepatic tissue, the treatment with a single substance (ASP or AFB1) caused an increase in TBARS levels, and a reduction in non-enzymatic antioxidant defenses (Vit C and NPSH levels and FRAP test). In the kidneys, TBARS levels were increased only in the group that received ASP + AFB1. The association reduced NPSH content, while the treatment with AFB1 reduced the FRAP levels. GST and CAT activities were increased in all treatments. Overall, ASP and AFB1 association presented higher toxic effects to the tissues. To the best of our knowledge, this is the first study demonstrating that the associated use of both ASP and AFB1 induces more extensive injuries in comparison to the effects caused by each one alone. Therefore, these data demonstrated that concomitant exposure to ASP and AFB1 potentiated their oxidative damage in hepatic tissue, suggesting that this organ is particularly sensitive to the toxic action induced by these substances.


Aflatoxin B1 , Antioxidants , Rats , Male , Animals , Aflatoxin B1/toxicity , Antioxidants/pharmacology , Aspartame/toxicity , Aspartame/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Rats, Wistar , Oxidative Stress , Liver , Biomarkers/metabolism , Food Additives/metabolism , Food Additives/pharmacology
5.
Chem Biol Interact ; 348: 109635, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34506763

Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 µg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1ß) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.


Aflatoxin B1/toxicity , Cytoprotection/drug effects , Liver/drug effects , Sesquiterpenes/pharmacology , Animals , Antioxidants/metabolism , Glutathione/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lipid Peroxidation/drug effects , Liver/cytology , Liver/metabolism , Male , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
...